Search results for "Laser deposition"
showing 10 items of 80 documents
High‐Quality Si‐Doped β‐Ga 2 O 3 Films on Sapphire Fabricated by Pulsed Laser Deposition
2020
The EU Horizon 2020 project CAMART2 is acknowledged for partly supporting the project, and the Ion Technology Centre, ITC, in Sweden is acknowledged for ion beam analysis (ERDA).
The challenge in realizing an exchange coupled BiFeO3-double perovskite bilayer
2020
Abstract In this work we propose a device design for efficient voltage control of magnetism. The magnetization of a ferrimagnetic double perovskite may be manipulated by an exchange coupled layer of multiferroic BiFeO3. Bilayers of Barium doped BiFeO3 and ferrimagnetic double perovskite Sr2FeMoO6 have been prepared by pulsed laser deposition motivated by the possibility of strong interlayer exchange coupling. While single layers of each material show high quality we observe that in both stacking orders the first layer decomposes during the deposition of the second layer. The reason for the decomposition are strongly differing growth conditions for BiFeO3 and Sr2FeMoO6. This means that the g…
Single crystal-like thin films of blue bronze
2021
Abstract Pulsed laser deposition technique was employed to grow thin films of K 0.3 M o O 3 on A l 2 O 3 (1-102) and S r T i O 3 (510) substrates. Structural and imaging characterization revealed good quality films with well oriented grains of few microns in length. Both non-selective (transport) and order-selective (femtosecond pump-probe spectroscopy) probes revealed charge density wave properties that are very close to those of the single crystals. The films exhibit metal-semiconductor phase transition in resistivity, pump-probe data show phase transition at the same temperature as the single crystal and the threshold for the photo-induced phase transition is approximately the same as in…
Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO2 thin films on sapphire
2020
A detailed structural investigation of the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films deposited on sapphire substrates by pulsed laser deposition was performed by in situ temperature-dependent X-ray diffraction (XRD) measurements. The structural results are correlated with those of infrared radiometry measurements in the SWIR (2.5-5 μm) and LWIR (8-10.6 μm) spectral ranges. The main results indicate a good agreement between XRD and optical analysis, therefore demonstrating that the structural transition from monoclinic to tetragonal phases is the dominating mechanism for controlling the global properties of the SMT transition. The picture that emerges is a SMT tr…
Pressure dependence of the optical properties of wurtzite and rock-salt Zn1–xCoxO thin films
2007
In this paper we investigate the electronic structure of Zn 1-x Co x O by means of optical absorption measurements under pressure. Thin films of Zn 1-x Co x O with different Co content (from 1 to 30%) were prepared by pulsed laser deposition on mica substrates. Absorption spectra exhibit three main features that are clearly correlated to the Co content in the films: (i) absorption peaks in the infrared associated to crystal-field-split internal transitions in the Co 3d shell, with very small pressure coefficients due to their atomic character; (ii) a broad absorption band below the fundamental edge associated to charge transfer transitions, that exhibit relatively large pressure coefficient…
Exchange stiffness in the Co2FeSi Heusler compound
2009
Using Brillouin light scattering spectroscopy, we determine the spin-wave exchange stiffness D and the exchange constant A for thin films of the full Heusler compound Co2FeSi prepared by pulsed laser deposition. The thermal spin-wave spectra were measured in various magnetic fields, for different transferred spin-wave momenta, and for different film thicknesses. Fitting the observed spin-wave frequencies, we find an extraordinarily large value of
Inspection of Laser Powder Deposited Layers
2014
Improvement of solid state Er:YAG pulse laser performance for use in medicine
1999
The large quadratic electro-optic effect of PLZT ceramics allows to design small size modulators for the solid state infrared Er:YAG laser (lasing at (lambda) equals 2.94 micrometers - the most pronounced absorption band of water), which has found application in medicine for efficient ablation of hard and soft tissues. In the free-running mode, the Er:YAG laser emits spikes that form the pulse envelope with duration of 150 - 800 microsecond(s) . An extracavity PLZT 8.5/65/35 ceramics modulator (aperture of 4 X 6 mm2 and length of 18 mm) was used to obtain (Pi) -shaped segments with the rise and decay times less than 5 microsecond(s) . That allows to reduce considerably the fraction of the p…
Transport Properties of Co2(Mn, Fe)Si Thin Films
2013
Thin Heusler films with the composition Co2Mn1−x Fe x Si were grown by both sputter and pulsed laser deposition. The samples show a high degree of structural order and very good magnetic properties. The availability of thin film samples on dielectric substrates allowed the systematic investigation of their electronic properties by transport experiments. The normal Hall effect shows a transition from a hole-like charge transport in Co2MnSi to an electron-like transport in Co2FeSi. This is in agreement with calculations, which predict that the substitution of Mn by Fe leads to a band filling and a shift of the Fermi energy. Furthermore, the behavior of the anomalous Hall effect was studied. I…